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Moment and Geometric Probability Inequalities

Arising from Arrangement Increasing Functions

by

Philip J. Boland, Frank Proschan, and Y. L. Tong

Abstract

A real valued function g of two vector arguments x and R is said to be

arrangement increasing if it increases in value as the arrangement of components
in x becomes increasingly similar to the arrangement of components in

Hollander, Proschan and Sethuraman (1977) show that the composition of arrange-

ment increasing functions is arrangement increasing. This result is used to

generate some interesting probability inequalities of a geometric nature for

exchangeable random vectors. Other geometric inequalities for families of

arrangement increasing multivariate densities are also given, and some moment

inequalities are obtained.
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1. Introduction

Definition 1.1. For a given vector x=(x 1 , ... , Xn) £Rn, we let xt=

(x [n] ... , x ) and x+= (x[1 ] '..., X[n]) be respectively the vectors with

the components of x arranged in increasing (decreasing) order. For any permu-

tation w of fl, 2, ... , n}, we let = (x]). .... , X(n)).

For vectors x, Y, u, v in Rn , we write x, )!I(, y) if there exists a

permutation w of (1, ... , n) such thatx =u and v. We define (x, y) ( u y_

if there exist a finite number of vectors z1 , J such that2 ... , y)c ana

ci) and Cx_ , ) and

(ii) z'- can be obtained from zi by an interchange of two components of
i
z , the first of which is less than the second.

Definition 1.2. A function g of two vector arguments x and ye Rn for which

g(x) g(y) when x is said to be arrangement increasing or AI by Marshall and

01kin (1979), and decreasing in transposition or DT by Hollander, Proschan and

Sethuraman (1977). We shall use the terminology arrangement increasing (AI) in

order to emphasize that such a function g(x, y) increases in value as the

arrangement of components in x becomes increasingly similar to the arrange.ent

of components in y.

Hollander, Proschan and Sethuraman (1977) have shown that the class of

arrangement increasing functions is closed under some basic operations. In

particular the class of such functions is closed under mixtures, and the product

of nonnegative Al functions is Al. If * is an increasing function and g(x, .)

is Al, then clearly *(g(x, y)) is Al. Perhaps the most powerful closure property

they show however is that the composition of Al functions is Al.

Theorem 1.3. (Hollander, Proschan and Sethuraman). Let u be a measure

defined on the Borel subsets of Rn such that for all Borel sets AcR n and all

.%- 
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permutations w, u(A)= u(A ) where A = {Y: Y=x = (x (, .. x (n) for some

xeA}. If gi is AI on Rn xR n for i=l, 2, then the composition g given by

g(a, b) = fg1(a, x)g2(x, )uCdx)

is Al, provided the integral exists.

We will illustrate some of the power of this result in Section 2 when we

show that many geometric probabilities of random vectors X with exchangeable

densities f(x) are AI functions. In Section 3 we further illustrate this power

with examples of geometric probability comparisons arising in families of AI

multivariate densities. Some moment inequalities are also obtained.

2. Arrangement Increasing Functions from Exchangeable Random Vectors.

In this section we will assume X= (Xl, ..., X n) is an exchangeable random

vector (that is the distribution of X = (X (1), ..., X (n)) does not depend on

the permutation w) with density or mass function f(x). Many interesting geo-

metric probability functions which are arrangement increasing as well as some

moment inequalities may be generated by the use of the following corollaries.

Corollary 2.1. Let X be an exchangeable random vector with density or

in nmass function f(x). Let h be an AI function on Rnx R and *. =R.R be non-

decreasing for i= 1, 2. Then

1 X_) 2 n2(X

(a, )=Exl(h (a,  2 (X, b))] is AI in (a, R R xR .

X 1 2

Proof: Let gi(a, x)= ul(hl(a, x_)) and g2 (x, b_)= 2 (h2(x, 2 J). Then g, and g2

are Al (nondecreasing functions of Al functions are Al). As u(d._ = f( )dx is a
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permutation symmetric measure, we deduce from Theorem 1.3 that

*Ca, b_)= fgCa, x)g2Cx, b)f()dx

is arrangement increasing in a and b n.

Corollary 2.2. Let X be an exchangeable random vector with density or
i.n n

mass function f(Cx, and h be an AI function on R x for i = 1, 2. Then for

any two constants c1 and c2 ,

P(a, b_ =Prob(h (a, D z cI, h 2. W c2)

*n n
is an arrangement increasing function of a and be R x R

Proof: This follows from Corollary 2.1 by letting = I (the character-

* istic function of the set [ci, +-)) for i=l, 2.

Example 2.3. The following are some elementary examples of AI functions

* which will be useful in illustrating Corollaries 2.1 and 2.2:

! i. hl1(up v_) = I{u i :  i=, n}"

il
n

2. h Cu, Y)= u. v..

b i=l u 2

4. h4(u, Y)u -0 xi
4- i= {u. > 0, v. > 0: i 1, n).

; i I

n+ +
S. h5Cu_, j_) = 1T Cui - vi) where Cu - vi) = Cu - v i)I{u V

ii

6. h6 cu, = -maxjui - vi .

n
7. h7(u, )= - I Jui -vi I.?i i=l

4 .

..
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Example 2.4. Judicious selection of h1 and h2 from, say Example 2.3, can

yield some useful Al geometric probability functions. We illustrate this with

some examples.

1. The rectangular probability

Prob(ai<Xi!b: i=l ... , n) =Prob(XE[a, b_)

is an Al function of a and b, as can be seen by using h (a, ) Ih(a, x)

and h (x, b) =h 1 (X, b). (See also Boland (1985) for more on rectangular

probabilities of this type).

n n
2. Prob( aiXci 2!c l , b.X. > c 2 ) is AI in a and b, as can be seen by

1 2
letting h (a, x) = h2 (a, x) and h2(x, b)=h 2 (x, _). For example, if

X= (X1 , X2) is exchangeable, then _ =Prob(4X 1 + X2 > 4, 2X 1 +4X2  2)

<Prob(X1 + 4X2  4, 2X1 + 4X 2) a 2

(Insert Figure 2.1 here)

3. Of course any combination of two of the types of functions in Example

2.3 gives us a probability function which is AI in a and b, such as

n
Prob( [ aiXi  c I and (Xc 2 )

i=l

or
n

Prob(X.za. for all i=l, ... , n and I ix i -bi 1<c2).
1 1 ~i=l i 2

Remark 2.5. Let X be an exchangeable random vector with mass or density

function f(2_). Let hi be an AI function for i= 1, 2, and assume

(a, _), (a', bJ) Rnx Rn are given, where (a, b) (a , b).

•...........'- . .... . ' . ... ..'" . . . . . . ,..... .
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Figure 2.1 Regions generated by Al functions.
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We use the notation Y= (YI Y2 ) (ha X), h 2X, )) and Y'= (Yi, Y)

(hl(a, D_, h 2(X, b')). Because X is exchangeable, Y and Y' have the same mar-

ginals. In other words the distributions of the marginals of Y are unaffected

by a permutation of the components of a or b, although their joint distribution

may be altered.

Corollary 2.2 says that (Yi, Y') is in a sense more positively quadrant

dependent than (Y1 0 Y2). See Lehmann (1966) and Barlow and Proschan (1981) for

concepts of dependence.

We might say that the bivariate vector (U', U) is more positively associ-

ated than (Ul1, U2) if U' and Ui have the same distribution for i =1, 2 and

1 1 2211 2Ucov(0I(UI). 02 (U ))> cov(0I(U1 ), *2 (U2 ))

for every pair 01. 02 of nondecreasing functions. (See Esary, Proschan and

Walkup (1967) for more on association). Then Corollary 2.1 implies that

(Y', Y ) is more positively associated than (YI, Y2) since for any nondecreasing

01 and 02$

cov( 1 (Y1), 02 (¥M)) -cov(O 1(Y1), ( 2 (Y2 )) =E(- 1 (Y1) 2 (Y ))-E(0l(Y1 )0 2 (Y2 )).

Remark 2.6. Corollary 2.1 yields moment inequalities when X is exchange-

nable taking values in [0, +o) Suppose that X is of this type and let us use

I n nthe notation of Remark 2.5 where however (a, b_, (a, b) E [0, +)nx [0, +M)

and h1 and h2 take nonnegative values.

Let i(y) =ymi for y O and mi a positive integer, i = 1, 2. Then Corollary

2.1 implies that when (a, ) 9 (a', b),

E(Y-ml Y¥m2) E(Yml y12) for all m ?l.1 2 1 2 2
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3. Arrangement Increasing Probabilities for Al families of Densities.

Many families of multivariate densities {f X have the property that the

function *(p, _) = f (x_ is arrangement increasing in the parameter X and the

outcome x. The multinomial

n A. xi
(, N I wi 0<X.s xi 0, 1, ... i=1, .... n and N>O

i=l X i I

and the multivariate normal distribution with common variance and common covar-

iance

n 1 -I

02 (A, _)= (2w)2I£t 2 e

(where E is the positive definite covariance matrix with22 -I
a on the diagonal and pa2 elsewhere and p -- )

are but two such examples. For many other examples see Hollander, Proschan

and Sethuraman (1977).

The following corollary of Theorem 1.3 enables one to construct many Al

functions of a geometric type for Al families of densities.

Corollary 3.1. Let {fA(I)) be an Al family of probability densities (or

mass functions). Suppose h is an Al function and that c is an arbitrary con-

stant. Then

PI, a = Prob(h(a x):c: X has density fI(_)

is an AI function of A and a.

Proof: This follows from Theorem 1.3 by letting g1 (a, x5 =I{h(a,x)2 cI'

g2 (1, f) = ( cnd u either Lebesgue measure or an appropriate counting measure

• " ' '" -- t- ",,'d'' ""' ml J| '" "a'' . . . . . '.. .. " " . * ~ .... •
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on a discrete set.

We now illustrate Corollary 3.1 with diverse examples.

Example 3.2. We assume that X is a multivariate random vector with density

given by fQc_, and that the family {f,(x)} is an AI family of densities.

1. FYa)= ProbX(X i ! a i : i=l, ... , n) and F

ProbX(X i >a. : il, ..., n) are Al in X and a. (See Hollander, Proschan

and Sethuraman (1977)).

n
2. ProbA. Iaix i X c) is Al in A ane a. As a special case, it follovis

n X.
that if X. >0 for all i and X, then Probi( [ 1) is AI in X and a,

S-=ai

where ae (0, +-)n

n 2
3. Prob( " l(X. a) c) is Al in X and a. Hence for a given _, the

H 1 1 g

probability that X lies in a sphere of radius r'" with center a=

(a,, ..., an), increases as the order of the coordinates of a becomes

more similar to the order of coordinates in X= (A1, ... , An).
n

Similarly if follows that

n

Prob (. IX i -ai <c) and ProbX(l Xi - ail <c: il1, ... , n)
X I-1 1x --ai

are both AI in A and a.

4. If X c[O, *-)n with probability 1 for all A, then Prob(- n= 1/af5c)

is Al in A and a where a c(O, +a)n.

. . . . . . . .



n +
5. Probx( n (Xi -a.) c) is AI in X and a. The boundary of the above

region for the 2 dimensional case is a hyperbola, illustrated in

Figure 3.1.

/ 2

x2  _____a_1)_____2____a__ 2)__ c

// a= (a1, a2)

xl -

/

Figure 3.1 Hyperbola

Examnple 3.3. Suppose that {f is an Al family of densities where each
- n

f(x) has support in [0, +)n. Now T is an AI function m and x, andi:1- -i=_1

n
hence a further application of Theorem 1.3 yields that E (ir X = ull' "'

* is an Al function of X and m.

n
I xiti

Now e---= e is also an Al function of x and t. It is easy to see

therefore that the multivariate Laplace transform

MGF fl (t f X )dxXP e-x -

is also an AI function in A and t.

.'. - - . . *,
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